TDoG-Skin/vendor/hoa/math/Combinatorics/Combination/Gamma.php

216 lines
4.7 KiB
PHP
Raw Normal View History

2024-08-17 18:43:48 +08:00
<?php
/**
* Hoa
*
*
* @license
*
* New BSD License
*
* Copyright © 2007-2017, Hoa community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Hoa nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS AND CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
namespace Hoa\Math\Combinatorics\Combination;
use Hoa\Iterator;
/**
* Class \Hoa\Math\Combinatorics\Combination\Gamma.
*
* Gamma^n_k denotes the set of k-uples whose sum of elements is n. For example:
* Gamma^2_3 = {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.
* For any k-uple γ and any α in {1, , k}, γ_α denotes the α-th element of γ.
* This class is identical to \Hoa\Math\Combinatorics\Combination::Gamma with a
* “yield” keyword.
*
* @copyright Copyright © 2007-2017 Hoa community
* @license New BSD License
*/
class Gamma implements Iterator
{
/**
* n.
*
* @var int
*/
protected $_n = 0;
/**
* k.
*
* @var int
*/
protected $_k = 0;
/**
* For iterator.
*
* @var int
*/
protected $_current = null;
/**
* For iterator.
*
* @var int
*/
protected $_key = -1;
/**
* For iterator.
*
* @var array
*/
protected $_tmp = null;
/**
* For iterator.
*
* @var int
*/
protected $_i = 0;
/**
* For iterator.
*
* @var int
*/
protected $_o = 0;
/**
* For iterator.
*
*
* @var bool
*/
protected $_last = false;
/**
* Constructor.
*
* @param int $n n.
* @param int $k k.
*/
public function __construct($n, $k)
{
$this->_n = $n;
$this->_k = $k;
return;
}
/**
* Get current γ.
*
* @return array
*/
public function current()
{
return $this->_current;
}
/**
* Get current α.
*
* @return int
*/
public function key()
{
return $this->_key;
}
/**
* Compute γ_{α + 1}.
*
* @return void
*/
public function next()
{
return;
}
/**
* Rewind iterator.
*
* @return void
*/
public function rewind()
{
$this->_current = [];
$this->_tmp = null;
$this->_i = 0;
$this->_o = 0 === $this->_n
? [0]
: array_fill(0, $this->_n, 0);
$this->_o[0] = $this->_k;
$this->_last = false;
return;
}
/**
* Compute γ_α.
*
* @return bool
*/
public function valid()
{
if (true === $this->_last) {
return false;
}
if (0 === $this->_n) {
return false;
}
if ($this->_k == $this->_o[$this->_i = $this->_n - 1]) {
$this->_last = true;
$this->_current = $this->_o;
++$this->_key;
return true;
}
$this->_current = $this->_o;
++$this->_key;
$this->_tmp = $this->_o[$this->_i];
$this->_o[$this->_i] = 0;
while ($this->_o[$this->_i] == 0) {
--$this->_i;
}
--$this->_o[$this->_i];
$this->_o[$this->_i + 1] = $this->_tmp + 1;
return true;
}
}